
ヘルプデスクとは? ヘルプデスクを効率的に行うツールをご紹介
1. h2o v3用のサンプルコード
h2o v3では、一部オプションの追加・廃止・表記変更が行われており、v2用に書いたコードは当該オプションの記述を書き換えないと動作しないことがあります。前編・後編の記事に関連する部分のみ抜粋すると、以下のような差分があります。
上記変更点を踏まえて、後編の中盤で記載したサンプルコードを修正すると以下のようになります。「variable_importances=T」というオプションも追記していますが、これについては、すぐ後で説明します。
datafile_path <- "accesslogdata.csv"
datafile
dlmodel<-h2o.deeplearning(x=seq(1,4),
training_frame=datafile,
hidden=c(20,20),
activation="Rectifier",
autoencoder=T,
variable_importances=T,
ignore_const_cols=F)
anomaly_data <- h2o.anomaly(data=datafile,object=dlmodel)
2. オプション「variable_importances」について
h2o.deeplearningで「variable_importances=T」を与えて実行すると、作成したモデルの中で、それぞれの説明変数(要素)をどの程度重要視しているのかを出力させることができます。
上記のサンプルコードの場合、
dlmodel@model$variable_importances
の部分にその情報が格納されます(v2の場合は「dlmodel@model$varimp」)。
この情報は、以下のようなコードでcsvファイルに出力させることもできます。
write.csv(dlmodel@model$variable_importances,"varimp.csv")
出力例として、後編の記事で、擬似アクセスログの異常検知を試みたときのvariable_importanceを表にしたものを示します。
(ここではトップ10のみ抜粋しましたが、実際にはcsvファイルに書き出せば最終位まで漏れなく出力されます)
variable | relative_ importance |
scaled_ importance |
percentage | |
1 | useragent.Mozilla/5.0 (iPhone... | 1 | 1 | 0.000724 |
2 | useragent.Mozilla/5.0 (Windows NT 6.1...Chrome... | 0.927 | 0.927 | 0.000671 |
3 | useragent.Mozilla/5.0 (iPad... | 0.868 | 0.868 | 0.000628 |
4 | useragent.Mozilla/5.0 (Windows NT 6.1... | 0.85 | 0.85 | 0.000616 |
5 | useragent.Mozilla/5.0 (Windows NT 6.1...Firefox... | 0.693 | 0.693 | 0.000502 |
6 | id | 0.656 | 0.656 | 0.000475 |
7 | useragent.Mozilla/5.0 (Linux; Android 5.1... | 0.533 | 0.533 | 0.000386 |
8 | time.2015/4/1 1:57:14 | 0.237 | 0.237 | 0.000171 |
9 | ipaddress.40.61.82.104 | 0.23 | 0.23 | 0.000167 |
10 | time.2015/4/1 0:39:04 | 0.229 | 0.229 | 0.000166 |
variableの列には「項目名.値」の様々なパターンが書き出されており、これが重要度順にソートされた項目値になります。6位の「id」のみ項目名のみの出力となっていますが、数値データについてはこのような扱いになるようです。
relative_importance列とscaled_importance列の値が重要度を表します。この例では2つの値が全て同値となっており、2種類の違いはわかりませんが、7位以上と8位以下とでは重要度の値に開きがあるので、7位以上がより重要視されていることがわかります。
percentage列は全行の値を合計すると1になっていました。重要度の全体を1としたときに当該要素がどの程度の割合を占めているかを表していると言えます。
Rankingランキング
New arrival新着
Keywordキーワード